Posts tagged with "university of Virginia"

health

UVA Tests Different Approach to Managing Type 2 Diabetes

A researcher at the University of Virginia School of Medicine is testing what he calls a “radically different” approach to managing type 2 diabetes for those who can’t or don’t want to lose weight.

Daniel Cox, PhD, professor of psychiatry and internal medicine, said his program “flies in the face of conventionality” in that it doesn’t insist on weight loss as a key component of controlling blood sugar. Instead, it combines continuous glucose monitoring with well-informed eating choices, to understand the effect of different foods on blood-sugar levels, and well-timed exercise, to reduce those levels as needed.

“The convention is ‘lose weight.’ And if you lose weight, you lose belly fat, and if you lose belly fat, you lose adipose tissue in the liver. And that, in turn, reduces insulin resistance,” Cox said. “That’s all fine and good. And if you can, in fact, lose a significant amount of weight and keep it off for a long time – a lifetime – you’re golden. You can even put diabetes in remission. There’s nothing wrong with that approach, and it’s a very effective approach. But some people don’t need to lose weight, and some people don’t want to lose weight, and other people want to lose weight but they can’t, or they can’t keep it off for a lifetime.”

A Different Take on Diabetes Management

Cox’s approach relies on continuous glucose monitoring to help people understand how their food choices affect their blood sugar. Different foods may affect people differently, he notes.medicine

Continuous glucose monitoring involves wearing a sensor on the back of the arm that continually sends a signal to a receiver that shows the person’s blood glucose level, without the need for fingersticks. Continuous glucose monitoring lets people see how a particular food affects their blood-glucose levels, whether it’s a sugary slice of cake or a seemingly healthy bowl of oatmeal, Cox said. Understanding that lets them make smart choices to keep their blood sugar under control.

If they do choose to indulge in a sugar-spiking food, the program encourages them to use light exercise, such as walking, to help bring their blood sugar back into check.

“This is the innovation: One, you dampen how much [blood sugar] goes up by minimizing the amount of carbohydrate you eat, and, two, you hasten its recovery by becoming more physically active,” Cox said. “Physical activity does two things: One, the skeletal muscle burns blood glucose as fuel, and, two, physical activity reduces your insulin resistance for a short period of time, about 24 hours.”

“Instead of fixing supper and having a great dinner and then plopping in front of the TV for the rest of the night, the alternative is becoming more physically active,” Cox said. “Do your shopping after you eat, walk the dog after you eat, clean your house after you eat.”

About the Diabetes Clinical Trial

Cox, of UVA’s Department of Psychiatry and Neurobehavioral Sciences, is testing his approach in small clinical trials at UVA, West Virginia University and the University of Colorado. Each site is recruiting four people newly diagnosed with type 2 diabetes who have not yet begun taking medication. The participants will be provided with a treatment manual, continuous glucose monitors and activity/sleep trackers. Trial organizers will then check in with them virtually over several weeks to see how well the approach keeps their blood sugar under control.

The study is the latest in a series evaluating the approach. Cox said he has been encouraged by previous results but notes that “there’s no one approach that works for everybody.”

“In our 12-month follow-up study, slightly over half of participants – 52 percent of people – we would still classify as responders, meaning they’re having a significant benefit,” he said.

For the right people, he said, the approach may offer a way to control blood sugar without medication or with less medication, while still allowing flexibility in dietary choices. “We’re not asking for radical changes in lifestyle,” he said. “We’re asking for modest changes in lifestyle that directly impact blood sugar.”

For More Information

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

Gym Illustration by Rita Azar for 360 Magazine

UVA on Battling Diseases by Exercise

A top exercise researcher and colleagues at the University of Virginia School of Medicine have launched an ambitious effort to understand the whole-body benefits of exercise so that doctors can use that information to prevent and treat disease.

Zhen Yan, PhD, and his collaborators aim to identify the sources, functions and targets of the molecules that provide exercise’s well-documented health benefits. By understanding this, doctors will better understand how exercise helps fend off disease, and they may be able to design drugs to mimic those benefits for people who cannot exercise, such as those with limited mobility. The cutting-edge research could open new doors both for preventing and treating many common illnesses, the researchers hope.

“No one would dispute that physical activity or regular exercise is the best measures for health promotion and disease prevention,” said Yan, director of the Center for Skeletal Muscle Research at UVA’s Robert M. Berne Cardiovascular Research Center. “In fact, the health benefits of exercise are way beyond our imagination. The underlying reasons for the superb health benefits of exercise are being uncovered by many talented and passionate scientists around the world.”

Understanding How Exercise Improves Health

The UVA researchers have recently joined a national consortium seeking to create a “molecular map” of exercise benefits. Known as the Molecular Transducers of Physical Activity Consortium, or MoTrPAC, the group includes researchers at top institutions across the country, including Harvard, Duke, Stanford and Mayo Clinic.

The consortium came about after the National Institutes of Health invited Yan and a dozen other prominent scientists to a roundtable discussion in 2010 about the future of exercise research and the obstacles that stood in its way. The NIH then set aside almost $170 million for MoTrPAC’s research – believed to be the agency’s largest-ever investment into the mechanisms of how physical activity improves health and prevents disease.

“The program’s goal,” Yan explained, “is to study the molecular changes that occur during and after exercise and ultimately to advance the understanding of how physical activity improves and preserves health.”

The consortium is looking at exercise benefits in both humans and animal models. Initial animal research was conducted at Harvard, the University of Iowa and the University of Florida. In the latest round, UVA is joined by the University of Missouri, the University of Kansas Medical Center and the University of California, Los Angeles.

The vast amount of information collected as part of the project so far has poised the UVA team to make “unprecedented” advances, Yan reports. He and his multi-disciplinary team will employ advanced computer algorithms to sift through the heaps of data to identify specific molecules to study. They will then conduct state-of-the-art research in lab mice using gene editing, combined with a wide range of functional assessment, including muscle, cardiac, metabolic and cognitive/mental functions. This will let them determine the effects the molecules have and lay a foundation for doctors to harness the molecules to benefit human health in the future.

Yan’s team will work closely with colleagues at Stanford, who will conduct advanced “multiomics” analyses, meaning they will bring together data on genes, cellular proteins and much more to obtain a more holistic understanding of exercise’s benefits to the body.

UVA’s research team includes Yan, of the Robert M. Berne Cardiovascular Research Center and the Departments of Medicine, Pharmacology and Molecular Physiology and Biological Physics; Wenhao Xu, PhD, of the Department of Microbiology, Immunology and Cancer Biology; Chongzhi Zang, PhD, of UVA’s Center for Public Health Genomics, the Department of Public Health Sciences and the Department of Biochemistry and Molecular Genetics; Matthew Wolf, MD, PhD, of the Department of Medicine’s Division of Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center; Thurl Harris, PhD, of the Department of Pharmacology; and Alban Gaultier, PhD, and John Lukens, PhD, both part of UVA’s Department of Neuroscience and the Center for Brain Immunology and Glia (BIG).

“It is well known that exercise is one of the best treatments for mood disorders,” Gaultier said. “We are excited to test the group discoveries using animal models of anxiety and depression.”

“This is an exciting opportunity for team science,” Zang said. “I am happy to work with colleagues at UVA and across the country and use data-science approaches to unravel the complex molecular effects of exercise.”

UVA’s effort has received almost a half-million dollars in backing from the NIH’s fund for MoTrPAC’s research.

“Our research team encompasses exceptional talents. The collective wisdom and expertise of the team at UVA and MoTrPAC will allow us to reach a level that we would not be able to reach by an individual,” Yan said. “It is an unprecedented opportunity in our lifetime to tackle this incredibly important question to mankind.”

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

MORE: Exercise may help prevent deadly COVID-19 complication.

Breast Cancer Illustration by Kaelen Felix for 360 Magazine

UVA Breast Cancer Discovery

University of Virginia Cancer Center researchers have identified a gene responsible for the spread of triple-negative breast cancer to other parts of the body – a process called metastasis – and developed a potential way to stop it.

Triple negative breast cancer (TNBC) is an aggressive form of breast cancer that accounts for 40,000 deaths in the United States annually. The majority of these deaths result from resistance to chemotherapy and subsequent aggressive metastases. So UVA researchers asked: What causes a primary tumor to become metastatic? This is an important question in cancer biology because patients with metastatic tumors have the highest death rate.

UVA’s Sanchita Bhatnagar, PhD, and her team found that the breast cancer oncogene TRIM37 not only causes the cancer to spread but also makes it resistant to chemotherapy. A new approach she and her colleagues have developed could possibly address both, the researchers hope.

“Despite metastasis being the key reason for failure of cancer therapies, it remains poorly understood. We do not clearly understand what drives the metastatic growth in patients,” said Bhatnagar, who was the first to identify TRIM37 as a breast cancer oncogene. “In general, several genes are altered during tumorigenesis. However, whether targeting the same genes will prevent metastatic transition remains to be addressed.”

Promising research from Bhatnagar’s team shows that targeting TRIM37 prevents metastatic lesions in mouse models. Those findings form the foundation of her lab’s current work exploring the role of TRIM37 in racial disparities in triple negative breast cancer. Incidence of the disease is disproportionately higher in African-American women compared with other races, with a 5-year survival rate in African-American patients of only 14% compared with 36% in non-African-American women.

Targeting Triple-Negative Breast Cancer

Bhatnagar and UVA’s Jogender Tushir-Singh, PhD, have developed a new approach to stop the effects of TRIM37 and, hopefully, prevent or significantly delay the spread of triple-negative breast cancer. This could also lower the disease’s defenses against chemotherapy.

Blocking the gene could benefit approximately 80% of triple negative breast cancer patients, the researchers estimate.

Bhatnagar and Tushir-Singh’s approach uses nanoparticles – microscopic balls of fat – to deliver treatment to block TRIM37. These nanoparticles are paired with specially engineered antibodies that bind to the cancerous cells but not to healthy cells. “As soon as the antibody finds the triple negative breast cancer cell, it binds to the receptor and is taken up by the cell,” explained Tushir-Singh, of UVA’s Department of Biochemistry and Molecular Genetics.

“It is a kiss of death,” Bhatnagar said, “that selectively reduces the expression of TRIM37 in cancer cells and prevents the spread.”

The approach could be used to deliver targeted treatments for many other cancers as well, the researchers report. “That would not only get the treatment where it needs to be but, hopefully, help prevent unwanted side effects. Besides preventing metastases, it adds selectivity,” Bhatnagar said.

“A problem in the field is, how will you give [a nanoparticle treatment] to the patients? Most of these nanoparticles are cleared by the liver, so they never have a chance to really do their job,” she said. “In this study, researchers bypassed this issue by delivering nanoparticles by nasal route, increasing the rate of uptake in the lungs – one of the most common metastatic target sites in TNBC patients.”

The development of the new approach is in its early stages, but tests with lab mice have offered encouraging indications. “The lungs showed dramatic reduction in metastatic lesions after the treatment in comparison to the mice that received no treatment,” Bhatnagar said.

Next Steps

To verify that TRIM37 targeting might offer a potential treatment approach, Bhatnagar teamed up with Tushir-Singh, her husband, to test it in the lab. “And we find that our targeted nanoparticles significantly reduce metastatic lesions in the lungs of spontaneous metastatic murine [mouse] models – both immune compromised and immune sufficient,” she said. “This is an important proof-of-concept much needed for the bench-to-clinic transition of these important findings.”

Clinically, most women in the early stages of breast cancer are treated with surgery, followed by radiation or chemotherapy. However, metastasis remains a challenging medical problem. Bhatnagar’s research offers a potential way to target a driver of metastasis that she hopes will prevent or slow metastatic progression and improve overall survival.

Much more work needs to be done, but Bhatnagar’s research is being noticed by pharmaceutical companies interested in exploring the approach’s potential. “This is a delivery platform, not only for targeting our protein of interest but for many other chemotherapeutic drugs that can be packaged into the nanoparticles and selectively delivered,” Bhatnagar said.

Findings Published

The researchers have published their findings in the scientific journal Cancer Research. The research team consisted of Piotr Przanowski, Song Lou, Rachisan Djiake Tihagam, Tanmoy Mondal, Caroline Conlan, Gururaj Shivange, Ilyas Saltani, Chandrajeet Singh, Kun Xing, Benjamin B. Morris, Marty W. Mayo, Luis Teixeira, Jacqueline Lehmann-Che, Jogender Tushir-Singh and Sanchita Bhatnagar.

Bhatnagar, a Hartwell Investigator, is supported by the Department of Defense Breast Cancer Research Breakthrough Award (BC170197P1, BC190343P1) and Metavivor Translational Research Award. A provisional patent has been filed for the molecularly targeted nanoparticle design engineered by the Bhatnagar and Tushir-Singh laboratories.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog.

Covid Mental Health illustration by Mina Tocalini

The Coma Plan – New Treatment for Comatose Patients

Leading coma experts have created an ambitious plan to help doctors better care for comatose patients and answer that most awful question: “Will my loved one wake up?”

To clarify, the three-part plan outlines key steps physicians and researchers should take in the coming years to improve patient care and deepen our understanding of coma and other conditions that reduce consciousness. The plan was developed by a blue-ribbon scientific advisory council as part of the Neurocritical Care Society’s Curing Coma Campaign, a major effort launched in 2019.

“We now have the tools to understand comatose patients in a way we haven’t in the past. This opens the door to ask the question, ‘Can we improve consciousness in patients in a coma?’” said advisory council member and lead author J. Javier Provencio, MD, director of UVA Health’s Nerancy Neuroscience Intensive Care Unit. “This research endeavor aims to help patients and families dealing with the consequences of brain damage gain clarity about the current chances for improvement and maintain hope that, in the future, there will be treatments to help recover consciousness.”

The Coma Plan’s Three Pillars

The plan’s first recommendation is to better classify and understand different types of coma and their causes. Currently, treatments are limited in part because it is difficult for physicians to distinguish between different underlying mechanisms of impaired consciousness, the researchers say. This makes it challenging to predict whether patients will recover.

Therefore, they suggest several different classifications. For example, coma without underlying physical damage, such as those caused by drug overdoses or seizures, are often reversible using available treatments. Another category is particularly tricky – coma with hidden physical causes. Better categorization of common coma “endotypes” will help physicians with their diagnoses and treatment decisions, the council says.

The council also urges the development of better indicators of patient prognosis. These indicators, known as biomarkers, already play important roles in guiding treatment. But more sophisticated ones are needed to understand the complex interactions occurring inside the brain. This will help doctors guide patients to better outcomes and advise families on how well their loved one will recover.

Finally, the council urges clinical trials of new therapies to promote recovery of consciousness for intensive-care patients who are in comas or suffering from other forms of reduced consciousness.

“We envision that a principled, mechanistic approach to predicting and measuring responses to new therapies in the ICU could allow clinicians to provide targeted treatments that are personalized to each patient, ensuring that each patient is given the best possible chance to recover consciousness in the ICU and beyond,” the council members write in a new paper outlining their recommendations.

“Coma is the most severe manifestation of brain injury,” Provencio said. “With this initiative, we hope to be able to treat patients in a coma the way we treat patients with strokes and heart attacks. In the future, having impaired consciousness from brain injury won’t be the lifelong medical condition it is now.”

About the Coma Plan

The advisory council has published its recommendations in the scientific journal Neurocritical Care. The council consisted of Provencio, J. Claude Hemphill, Jan Claassen, Brian L. Edlow, Raimund Helbok, Paul M. Vespa, Michael N. Diringer, Len Polizzotto, Lori Shutter, Jose I. Suarez, Robert D. Stevens, Daniel F. Hanley, Yama Akbari, Thomas P. Bleck, Melanie Boly, Brandon Foreman, Joseph T. Giacino, Jed A. Hartings, Theresa Human, Daniel Kondziella, Geoffrey S.F. Ling, Stephan A. Mayer, Molly McNett, David K. Menon, Geert Meyfroidt, Martin M. Monti, Soojin Park, Nader Pouratian, Louis Puybasset, Benjamin Rohaut, Eric S. Rosenthal, Nicholas D. Schiff, Tarek Sharshar, Amy Wagner, John Whyte and DaiWai M. Olson writing on behalf of the Neurocritical Care Society Curing Coma Campaign.

Provencio disclosed that he has received grants and personal fees from Minnetronix Inc., a medical technology company. A full list of the other authors’ disclosures is included in the paper.

Keep up with the latest medical research news from UVA

Subscribe to the Making of Medicine blog HERE

 

THE PRINCETON REVIEW

Two Houston, TX schools earned #1 spots on our just-reported lists of the Top Schools for Entrepreneurship Studies for 2020:

● The University of Houston is #1 on the undergrad schools list 

● Rice U is #1 on the graduate schools list.

The Princeton Review surveyed more than 300 schools offering entrepreneurship studies, and analyzed more than 60 survey data points to tally these lists. Read our release here:  http://www.princetonreview.com/press/top-entrepreneurial-press-release

See the full lists here: http://www.princetonreview.com/college-rankings/top-entrepreneur

Top 10 Schools on The Princeton Review’s List “Top 50 Undergrad Schools for Entrepreneurship Studies for 2020″

1. University of Houston (TX)
2. Babson College (MA)
3. Brigham Young University (UT)
4. The University of Michigan
5. Baylor University (TX)
6. Washington University in St. Louis (MO)
7. University of Maryland
8. Tecnológico de Monterrey (Mexico)
9. Northeastern University (MA)
10. North Carolina State University

Top 10 Schools on The Princeton Review List “Top 25 Graduate Schools for Entrepreneurship Studies for 2020”

1. Rice University (TX)
2. The University of Chicago (IL)
3. Northwestern University (IL)
4. Babson College (MA)
5. University of Michigan
6. University of Virginia
7. Columbia University (NY)
8. The University of South Florida
9. University of Rochester (NY)
10. Northeastern University (MA)

Can plastic surgery make you look older?

According to expert Board-Certified Plastic surgeons, the goal of cosmetic surgery is to make a woman like look a refreshed, enhanced version of herself. While many seek cosmetic surgery to turn back the clock; (a respectable, personal choice) there is a downside. The eerie expressionless, puffy, distorted, look that makes people appear even older than they are. To help us understand and achieve a more maintained, elegant look, we tapped the expertise of Board-Certified Denver Plastic Surgeon Dr. Manish Shah.

Most Common Culprit… Too Much Filler

According to Dr. Shah, the best way to begin is to look at photos of the person decades younger to assess their aging progression and facial symmetry. “You want to look at the facial features to see where there is drooping or volume loss as not to run the risk of over filling the face. When too much filler is used, facial balance is thrown off.”

Dr. Shah explains that today we’re seeing young women in their 20’s trying to look like they’re photo filtered in real life. “They start Botox too young, or overfill their lips, breasts, and derrieres. The odd consequence is that that end up looking older. There are several celebrities who are under 25 and look 30, and 35 due to the work they’ve had done. The lips and cheeks are often the first facial features to be overdone in younger patients.”

Facial Breakdown

Cheeks: Dr. Shah says, that “Over-suctioning cheeks through liposuction can make you look older. Stiffness or “puffy cheeks” can also occur if there is unnecessary fat transfer or filler injections are overdone.”

Brows: A highly arched eye brow, or a brow without any arch can instantly age you. “Getting the eyebrow height perfect to achieve a natural look is one of the most challenging techniques plastic surgeons face with Botox, be sure to find someone who specializes in brow area Botox.”

Chin: “The overall balance of your face can be thrown off if a chin implant is too large,” says Dr. Shah. He adds, “Facial structure goes from more of a heart shape to a square shape. Also, the softness of your face gets lost.”

Neck: Removing too much fat from the neck can result in an excessive deep and sharp angle that gives more of a harsh look.

Midface: Some women get a facelift before it’s needed. Think of many of the stars of Bravo’s Real Housewive’s franchise. “When it’s unnecessary or not done properly, the underlying facial tissues give an unnatural fullness in the cheeks that makes the face look aged, explains Dr. Shah.”

Eyes: Fat removal under the eyes is popular in younger patients. The problem is that removing too much fat can really make a patient look hollower rather than refreshed.

Injectable Toxins: The Frozen Look

Botox, Dysport and Xeomin are all effective in reducing lines by temporarily paralyzing facial muscles to stop movement. Problems arise when they are overdone. The face can look very severe and certain facial features can become exaggerated. It is strange to see a woman over 50 with fewer forehead and brow mobility than a pre-teen!

Dr. Shah offers a tip and reminds us that injectable toxins are not permanent, and the result will fade away in time. “It’s best to let the product completely wear off before getting injectable toxins applied to the face again. It’s always best to start off with much less because you can always work your way up to more,” he advises.

Too Large Breast Implants:

Implants that do not fit a woman’s frame and are overexaggerated, are never a good idea at any age. The older a woman gets, the more this is going to scream, “look at me” and be incongruous with the rest of her appearance. Jane Fonda is a perfect example of a woman in her 80’s with implants that match her body in a flattering way.

Ignoring Your Hands and Décolleté:

So many women make the mistake of obsessing over their face, legs, derriere, breasts, and abdomen that they completely forget their hands and décolleté. The latter are a dead giveaway of age, no matter how young the rest of you looks.

Examples of Elegance:

According to Dr. Shah, here’s who he feels has “gotten it right” when it comes to aging gracefully whether they have had plastic surgery or not include, Jane Fonda, Jennifer Aniston, Jennifer Lopez, Halle Berry, Angela Bassett, Katie Couric, Raquel Welch, Kathie Lee Gifford, Kris Jenner, Naomi Campbell, Michelle Pfeiffer, Jayne Seymour, Ellen DeGeneres, Sharon Stone, and Padma Lakshmi. Use these celebs for inspiration when contemplating cosmetic enhancements.

Find out more at www.drmanishshah.com

About Dr. Manish Shah

Plastic Surgeon Colorado | Dr. Manish Shah, M.D. | Denver

Manish Shah, M.D., F.A.C.S. was born in Canada and raised in the Washington, D.C. area. He graduated with honors from the University of Pennsylvania, receiving a degree in biomedical engineering. He then completed his medical training at the University of Virginia, earning his Medical Doctorate. During this time he also completed a one-year fellowship in microsurgery research at the New York University School of Medicine / Institute of Reconstructive Plastic Surgery. As a prelude to his plastic surgery training, Dr. Shah completed a rigorous five-year training program in General and Trauma Surgery at Emory University and the Medical College of Georgia. His formal training in Plastic and Reconstructive Surgery was completed at the Univ. of Tennessee College of Medicine – Chattanooga Unit. After completing his plastic surgery training, he moved to New York City when he was selected for the prestigious Aesthetic Surgery Fellowship at Manhattan Eye, Ear, and Throat Hospital. He underwent extensive, advanced training in aesthetic surgery of the face, breasts, and body at the hands of some of the most renowned cosmetic surgeons in the world. This fellowship is widely considered to be the best of its kind in the world. Dr. Shah is one of only a select few plastic surgeons in the country who have undergone formal post-graduate training in aesthetic surgery.

Dr. Shah’s specialties include revision facial aesthetic surgery, rhinoplasty (“nose reshaping”), and aesthetic surgery of the breast (breast augmentation, breast lift, breast reduction). He is, however, well-trained in all areas of aesthetic surgery. Dr. Shah’s aim is to obtain a natural appearing transformation that complements the real you!

Dr. Shah is a past Clinical Assistant Professor of Surgery at the University of Colorado Health Sciences Center based at Denver Health Medical Center, the Rocky Mountain region’s only academic Level I trauma center. He is a past Chief of Plastic Surgery at Denver Health Medical Center. He also maintains a private practice in Aesthetic and Reconstructive Plastic Surgery on the Dry Creek Medical Center campus (DTC/Denver) and up in the Aspen Valley (Basalt – in the office of MDAesthetics – Tim Kruse, M.D.).

Dr. Shah is a member of the American Society of Plastic Surgeons, the American Society of Aesthetic Plastic Surgery and the International Society of Aesthetic Plastic Surgery. Dr. Shah is board-certified by the American Board of Plastic Surgery.

A Concert for Charlottesville × Livestream

A CONCERT FOR CHARLOTTESVILLETO BE LIVESTREAMED ON TUMBLR

 

Fans Can Tune In On Tumblr For An Evening of #MusicandUnity On September 24

 
Performers include: Dave Matthews Band, Pharrell Williams, Justin Timberlake,

Chris Stapleton, Ariana Grande, The Roots, Brittany Howard of Alabama Shakes, Cage the Elephant and Special Guests

In response to the recent events in their hometown of Charlottesville, VA, Dave Matthews Band will host an evening of music and unity that is FREE for members of the Charlottesville and University of Virginia communities. The event – produced by Live Nation, Starr Hill Presents and the University of Virginia will be livestreamed to a global audience through a media partnership with Oath (a subsidiary of Verizon).

 

The event, hosted by Dave Matthews Band, will be held in their hometown at the University of Virginia’s Scott Stadium. Fans can tune in at musicandunity.tumblr.com beginning at 5:55 PM ET on Sunday, September 24, 2017, as well as via other Oath brands including HuffPost.com, Aol.com, Yahoo.com, BUILDSeries.com, and on other social media platforms.

A Concert for Charlottesville” will feature: Dave Matthews Band, Pharrell Williams, Justin Timberlake, Chris Stapleton, Ariana Grande, Brittany Howard of Alabama Shakes, The Roots, Cage the Elephant and special guests.

 

The livestream will be co-produced by Oath Studios furthering Oath’s commitment to bringing live experiences that drive community to users around the world, and will be directed by Brett Ratner, award-winning film director and producer.

 

About Oath

Oath, a subsidiary of Verizon, is a values-led company committed to building brands people love. We reach over one billion people around the world with a dynamic house of media and technology brands. A global leader in digital and mobile, Oath is shaping the future of media. For more on Oath, visit

www.oath.com.