Posts tagged with "Josh Barney"

Art by Mina Tocalini for use by 360 Magazine

Scientists Mapping Next Pandemic

An international team of scientists has created a powerful new resource to speed the development of vaccines and treatments to battle the next pandemic.

University of Virginia School of Medicine researcher Wladek Minor, PhD, and collaborators in China and Poland have developed an Internet information system, called virusMED, that lays out all we know about the atomic structure and potential vulnerabilities of more than 800 virus strains from 75 different virus families, including SARS-CoV-2, influenza, Ebola and HIV‑1. Several of the collaborators, including the lead investigator, Heping Zheng, are former students and members of Minor’s lab at UVA. 

This new panorama of the proteins of potential threats will help scientists respond quickly and effectively against the next pathogen poised to wreak havoc on humanity. Minor and his collaborators compare the resource to Google Maps, in that it organizes and annotates major points of interest on a virus that scientists can use as a roadmap in drug and vaccine development.

“The battle with COVID-19 is not over yet, but we cannot wait to start preparing for the next pandemic. VirusMED is a step towards an advanced information system that brings together researchers with diverse expertise to tackle complex biomedical challenges,” said Minor, the Harrison Distinguished Professor of Molecular Physiology and Biological Physics at UVA. “The information contained in virusMED will help viral researchers from many disciplines, especially those working on drug design or anti-viral therapies. We provide novel structural analysis and integrate pertinent information from various resources to provide a comprehensive picture of the proteins’ most important and vulnerable regions.”

Virus Hotspots

By quickly unlocking the SARS-CoV-2 virus mechanism of action, scientists were able to develop safe and effective vaccines for COVID-19. Minor’s new database aims to put that type of critical information at scientists’ fingertips in one convenient location.

VirusMED contains extensive information on virus species and strains, hosts, viral proteins and antibodies, as well as drugs that have already been approved by the U.S. Food and Drug Administration, among other important scientific data. The researchers call the points of interest on a virus its “hotspots,” and these hotspots make for strong starting points for drug and vaccine development.

“One of the most promising strain-indifferent antibody therapies developed for the treatment of COVID-19 used this type of information to improve upon a unique antibody isolated from a survivor who was infected by the SARS virus back in 2003,” said David Cooper, PhD, research faculty in Minor’s lab. “People who are surprised by rapid drug and vaccine design don’t realize that researchers today are building upon decades of previous research.”

One of virusMED’s major advantages is that it brings together the extant knowledge about viruses in one location, Minor said. Previously, that data was spread across multiple resources and often “siloed” so that it was not easily accessible. With virusMED, researchers can browse the information by virus or by their hotspot of interest.

The free and accessible database can be found HERE.

“One of the goals of my lab is to make tools that other scientists can use. We look at the forest and find ways to help others focus on the trees,” Minor said. “Resource generation is not glamorous, but the ultimate goal of science is to make life better. One of the anonymous peer-reviewers of the paper claimed they instantly became an enthusiastic user of the system. We expect virusMED to really make a difference.”

Findings Published

The researchers have published their findings in the scientific IUCr Journal. The work will be featured on the journal’s cover. The research team consisted of HuiHui Zhang, Pei Chen, Haojie Ma, Magdalena Woinska, Dejian Liu, Cooper, Guo Peng, Yousong Peng, Lei Deng, Minor and Zheng. .

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog.

Art by Mina Tocalini for use by 360 Magazine

COVID-19 Wastewater Testing

COVID-19 Wastewater Testing Proves Effective in New Study, Research Offers Needed Guidance for Early Detection in Nursing Homes, Dorms

Wastewater testing is an effective way to identify new cases of COVID-19 in nursing homes and other congregate living settings, and it may be particularly useful for preventing outbreaks in college dormitories, a new University of Virginia study finds.

The research, a collaboration of UVA’s School of Medicine and School of Engineering, was led by UVA Health’s Amy Mathers, MD. It offers some of the first clear guidance on the most effective methods to perform testing to detect COVID-19 in wastewater.

The researchers evaluated and compared sampling and analysis techniques by testing them within buildings with known numbers of positive cases. They were then able to determine wastewater testing’s strengths and limitations as a tool for monitoring COVID-19 in a building population. For example, the technique proved better at detecting initial infections than determining the number of occupants infected or how long they had been infected. 

One important answer revealed by the research: Wastewater testing can detect even small numbers of asymptomatic cases, something not previously documented.

“This work could be applied to surveillance in buildings where people live in groups, where transmission may be hard to control but the risk of spread could be high,” said Mathers, an infectious disease expert in the School of Medicine’s Department of Pathology. “Since we can identify new infections with high sensitivity, it provides an early warning signal of when to test everyone in the building to find and isolate the newly infected persons before an outbreak becomes large.”

Wastewater Testing for COVID-19

To evaluate the effectiveness of wastewater testing for detecting COVID-19, Mathers collaborated with Lisa Colosi-Peterson, PhD, an associate professor in UVA Engineering’s Department of Engineering Systems and Environment, who connected with Mathers through UVA’s Center for Engineering in Medicine. They and their colleagues monitored wastewater from two student dormitory complexes for eight weeks. They then compared their findings to the results of periodic student testing UVA had implemented to prevent COVID-19 transmission. The researchers found that the wastewater testing caught more than 96% of cases.

One limitation of wastewater testing: It could not distinguish between new infections and virus found in stool from those who had recovered and were no longer contagious. That means the wastewater testing detected both active and former cases. “The inability to distinguish recently infected but no longer contagious persons from new contagious infections within a building is an important finding, as it means that wastewater testing would be best for identifying new cases and isolating individuals in groups without recent infections,” Mathers said.

UVA’s new research also establishes useful protocols for wastewater testing. In a scientific paper outlining their findings, the researchers describe how they collected and tested the samples, noting that refrigerating the samples on ice adequately preserved them for testing that same day. Institutions that plan to send their samples elsewhere for testing, however, may need to take additional steps to preserve the samples for longer, the researchers note. Cleansers and disinfectants used in the facilities could also degrade the viral RNA over time, they caution.

While the researchers are urging further study, they conclude that wastewater testing holds great promise for detecting and controlling COVID-19 in places where people live in close quarters. “Passive pooled surveillance of wastewater is now serving as an early warning system in many dormitories, barracks and prisons to identify new cases in situations where transmission risk is high,” Mathers said. “Applications for wastewater surveillance to inform and control infectious disease transmission will continue to evolve, but it is hard to believe how far and how fast we have come in the last year.”

Findings Published

The project was a collaborative effort of UVA’s School of Medicine, School of Engineering, School of Data Science and UVA Health’s Facilities Management. The research team consisted of Colosi-Peterson, Katie E. Barry, Shireen M. Kotay, Michael D. Porter, Melinda D. Poulter, Cameron Ratliff, William Simmons, Limor I. Steinberg, D. Derek Wilson, Rena Morse, Paul Zmick and Mathers.

The researchers have published their findings in the scientific journal Applied and Environmental Microbiology.

The work was supported by a UVA Engineering in Medicine Seed Grant and support from the University Reopening Committee.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

AC_LatinoCovid by Allison Christensen for 360 Magazine

Antibody Cocktail May Prevent Symptomatic COVID-19 Infections

An antibody cocktail being tested at UVA Health and other sites was able to block 100% of symptomatic COVID-19 infections among people exposed to the virus, early results from the clinical trial suggest.

In addition, those who developed asymptomatic infections accumulated far less virus in their bodies than usual and saw their infections resolve within a week, according to interim data released by the cocktail’s manufacturer, Regeneron Pharmaceuticals.

“This is the first treatment shown to prevent COVID-19 after a known exposure, and offers protection for unvaccinated individuals caring for a family member with COVID-19,” said UVA Health’s William Petri Jr., MD, PhD, one of the leaders of the trial at UVA. “We expect that Regeneron will file for Emergency Use Authorization from the FDA so that this drug can be used outside of the context of a clinical trial.”

Antibodies for COVID-19

The phase 3 clinical trial aims to determine if the antibodies will prevent COVID-19 infection in people who have been exposed but not yet developed the disease. This is known as “passive immunization.”

Regeneron’s new analysis, which has not yet been published in a scientific journal, looked at outcomes in approximately 400 trial participants. Of 186 people who received the antibodies, none developed symptomatic COVID-19. Of the 223 who received a placebo, eight developed symptomatic COVID-19, the company reports.

Asymptomatic infections occurred in 15 of the antibody recipients and in 23 of the placebo recipients. Overall rates of infection, including both symptomatic and asymptomatic infections, were approximately 50% lower in the antibody group.

Among those who developed infections, placebo recipients had, on average, a peak viral load (the amount of virus in the body) that was more than 100 times greater than antibody recipients. The antibody group also recovered more quickly–all the infections resolved within seven days, while 40 percent of infections in the placebo group lasted three to four weeks, Regeneron said.

The cocktail also appears to shorten the duration of viral shedding, the time when the virus is being manufactured in the body. The viral shedding period was nine weeks among antibody recipients and 44 weeks among the placebo recipients. While people with COVID-19 are not infectious for this entire time, reducing the duration of viral shedding may shorten the period when they can spread the disease.

There were more adverse events reported among placebo recipients than among antibody recipients – 18 percent and 12 percent, respectively. Regeneron attributed this to the larger number of COVID-19 infections in the placebo group.

There was one death and one COVID-19-related hospitalization in the placebo group and none in the antibody group. Injection-site reactions were reported among 2 percent of both groups.

“We are profoundly grateful to the nurses and staff of the UVA COVID-19 clinic, led by Dr. Debbie-Anne Shirley,” Petri said. “Their day-to-day support made our participation in this trial possible.”

About the Clinical Trial

Phase 3 clinical trials, such as the one under way at UVA, examine the safety and effectiveness of new drugs and treatments in large numbers of people. Positive results in the phase 3 trial could spur the federal Food and Drug Administration to make the antibody cocktail available for post-exposure COVID-19 prevention.

The antibody cocktail is not a vaccine and is not expected to provide permanent immunity to COVID-19.

The team conducting the study at UVA is led by Petri and Shirley and includes Gregory Madden, MD; Chelsea Marie, PhD; Jennifer Sasson, MD; Jae Shin, MD; Cirle Warren, MD; Clinical Research Coordinator Igor Shumilin; assistant Rebecca Carpenter; and COVID-19 Clinic nurses Michelle Sutton, Elizabeth Brooks, Danielle Donigan, Cynthia Edwards, Jennifer Pinnata, Samantha Simmons and Rebecca Wade.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog.